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Abstract

Differentially 3,4-disubstituted cyclopentenones are constructed via a novel Pauson–Khand cyclization/
cleavage strategy of N�O linked enynes. © 2000 Published by Elsevier Science Ltd.

The Pauson–Khand cycloaddition has recently emerged as a premier method for the construc-
tion of cyclopentenones and cyclopentane containing natural products.1 Intermolecular exam-
ples of this formal [2+2+1] cycloaddition generally provide a mixture of regioisomers.2

Intramolecular reactions generally overcome this regioselectivity issue, however, not all synthetic
targets are amenable to an intramolecular approach.3 In these instances, a cleavable and
sometimes ‘traceless’ tether can provide an intramolecular cyclization that can be subsequently
cleaved. In an attempt to apply this approach to a general methodology for natural product
synthesis, we utilized a cleavable tether strategy that provides additional functionality for further
synthetic modification.

The use of cleavable tethers was first applied to the radical-mediated synthesis of C-
glycosides4 (silyloxy tether) and palladium-catalyzed cycloadditions5 (ester tether). Since these
first examples, both tethered and cleavable functional groups have been recognized for their
entropic benefits and have become more widespread in synthetic endeavors.6 Many natural
products contain cyclopentane rings with adjacent heteroatom functionality. Examples include
palau’amine7,8 styloguanidines,9 axinellamines,10 and agelastatin.11 Utilization of a cyclization/
cleavage strategy for the construction of a five-membered ring 2 through an intramolecular
Pauson–Khand reaction with a novel tethered enyne 3 was envisioned (Scheme 1). This
nitrogen�oxygen linkage, in addition to controlling the regiochemistry of the transformation,
can allow for cleavage to give the monocyclic compound 1 that contains discriminant function-
alities, in this case an amino and hydroxyl group.
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Scheme 1. Retrosynthesis of the N�O linked cyclization/cleavage strategy

Construction of the benzyl-protected N�O linked enyne 7 was initiated from benzaldehyde
oxime 4. Treatment of 4 with NaH and propargyl bromide at 0°C furnished the oxime ether 5
in 84% yield (Scheme 2). Reductive amination under acidic conditions, followed by allylation of
the hydroxylamine 6, furnished the Pauson–Khand precursor 7 in moderate yield. Cycloaddition
of 7 mediated by dicobalt octacarbonyl and trimethylamine N-oxide furnished the Pauson–
Khand product 8 in 51% yield.12 This transformation validated the feasibility of an intramolec-
ular Pauson–Khand reaction using a novel N�O linkage.

Scheme 2. Synthesis of benzyl protected enyne 7 and cyclopentenone 8

Scheme 3. Synthesis of t-butoxycarbonyl-protected enynes 11 and 12
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An analogous t-butoxycarbonyl-protected enyne would further expand the scope of this N�O
cleavable tether approach. Alkylation of N-hydroxy phthalimide with TMS–propargyl bromide,
followed by treatment with hydrazine gave TMS–propargyl hydroxylamine 9 in 78% yield over
two steps. Hydroxylamine 9 could be protected as its Boc-carbamate 10 by treatment with
Boc-anhydride in the presence of Na2CO3 (79%). Further alkylation with allyl bromide in the
presence of NaH in DMF at 50°C for 2 h led to the formation of 11 in 63% yield, while allowing
the reaction to proceed for 12 h yielded 12 in 97% yield (Scheme 3).

Pauson–Khand cycloadditions of 11 and 12 to cyclopentenones 13 and 1413 (Scheme 4) were
accomplished under identical conditions as those for the benzyl-protected enyne 7. It is
interesting to note that comparable yields were observed for the cycloaddition of substrates 7
and 12 (51 and 59%, respectively), while the silyl-protected alkyne substrate 11 gave the highest
yield overall (76%).

General utility of this methodology will require mild and efficient cleavage of the N�O bond.
Treatment of both 13 and 14 with activated Zn/AcOH, nickel boride (NiB2), and hydrogenation
with various catalysts afforded none of the desired products (15 and 16). However, treatment
with SmI2 in THF/EtOH facilitated smooth cleavage of the backbone to give differentially
3,4-substituted cyclopentenones 15 and 16 in 83% and 76% yields, respectively (Scheme 5). These
and other cyclopentenones could prove to be valuable intermediates in the synthesis of complex
natural products.

In conclusion, we have designed a new N�O tethered enyne approach, compatible with
existing Pauson–Khand reaction conditions, to provide novel cyclopentenones. Selective cleav-
age of the N�O backbone produces differentially 3,4-substituted cyclopentenones. Further work
expanding the application and scope of this methodology is currently underway and will be
reported shortly.

Scheme 4. Pauson–Khand reaction of t-butoxycarbonyl-protected enynes 11 and 12

Scheme 5. Cleavage of N�O tether of cyclopentenones 13 and 14
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