

Pergamon Tetrahedron Letters 41 (2000) 9393–9396

TETRAHEDRON LETTERS

Synthesis of 3,4-substituted cyclopentenones via an intramolecular Pauson–Khand reaction of $N-O$ linked enynes

Stefan G. Koenig, Kristi A. Leonard, Ralf S. Löwe and David J. Austin*

Department of Chemistry, *Yale University*, *New Haven*, *CT* 06520, *USA*

Received 30 August 2000; accepted 7 September 2000

Abstract

Differentially 3,4-disubstituted cyclopentenones are constructed via a novel Pauson–Khand cyclization/ cleavage strategy of N-O linked enynes. \odot 2000 Published by Elsevier Science Ltd.

The Pauson–Khand cycloaddition has recently emerged as a premier method for the construction of cyclopentenones and cyclopentane containing natural products.¹ Intermolecular examples of this formal $[2+2+1]$ cycloaddition generally provide a mixture of regioisomers.² Intramolecular reactions generally overcome this regioselectivity issue, however, not all synthetic targets are amenable to an intramolecular approach.³ In these instances, a cleavable and sometimes 'traceless' tether can provide an intramolecular cyclization that can be subsequently cleaved. In an attempt to apply this approach to a general methodology for natural product synthesis, we utilized a cleavable tether strategy that provides additional functionality for further synthetic modification.

The use of cleavable tethers was first applied to the radical-mediated synthesis of *C*glycosides⁴ (silyloxy tether) and palladium-catalyzed cycloadditions⁵ (ester tether). Since these first examples, both tethered and cleavable functional groups have been recognized for their entropic benefits and have become more widespread in synthetic endeavors.⁶ Many natural products contain cyclopentane rings with adjacent heteroatom functionality. Examples include palau'amine^{7,8} styloguanidines,⁹ axinellamines,¹⁰ and agelastatin.¹¹ Utilization of a cyclization/ cleavage strategy for the construction of a five-membered ring **2** through an intramolecular Pauson–Khand reaction with a novel tethered enyne **3** was envisioned (Scheme 1). This nitrogen-oxygen linkage, in addition to controlling the regiochemistry of the transformation, can allow for cleavage to give the monocyclic compound **1** that contains discriminant functionalities, in this case an amino and hydroxyl group.

^{*} Corresponding author.

⁰⁰⁴⁰⁻⁴⁰³⁹/00/\$ - see front matter © 2000 Published by Elsevier Science Ltd. PII: S0040-4039(00)01495-7

Scheme 1. Retrosynthesis of the N-O linked cyclization/cleavage strategy

Construction of the benzyl-protected N-O linked enyne 7 was initiated from benzaldehyde oxime **4**. Treatment of **4** with NaH and propargyl bromide at 0°C furnished the oxime ether **5** in 84% yield (Scheme 2). Reductive amination under acidic conditions, followed by allylation of the hydroxylamine **6**, furnished the Pauson–Khand precursor **7** in moderate yield. Cycloaddition of **7** mediated by dicobalt octacarbonyl and trimethylamine *N*-oxide furnished the Pauson– Khand product $\hat{\mathbf{8}}$ in 51% yield.¹² This transformation validated the feasibility of an intramolecular Pauson–Khand reaction using a novel $N-O$ linkage.

Scheme 2. Synthesis of benzyl protected enyne **7** and cyclopentenone **8**

Scheme 3. Synthesis of *t*-butoxycarbonyl-protected enynes **11** and **12**

An analogous *t*-butoxycarbonyl-protected enyne would further expand the scope of this $N-O$ cleavable tether approach. Alkylation of *N*-hydroxy phthalimide with TMS–propargyl bromide, followed by treatment with hydrazine gave TMS–propargyl hydroxylamine **9** in 78% yield over two steps. Hydroxylamine **9** could be protected as its Boc-carbamate **10** by treatment with

Boc-anhydride in the presence of Na_2CO_3 (79%). Further alkylation with allyl bromide in the presence of NaH in DMF at 50°C for 2 h led to the formation of **11** in 63% yield, while allowing the reaction to proceed for 12 h yielded **12** in 97% yield (Scheme 3).

Pauson–Khand cycloadditions of **11** and **12** to cyclopentenones **13** and **14**¹³ (Scheme 4) were accomplished under identical conditions as those for the benzyl-protected enyne **7**. It is interesting to note that comparable yields were observed for the cycloaddition of substrates **7** and **12** (51 and 59%, respectively), while the silyl-protected alkyne substrate **11** gave the highest yield overall (76%).

Scheme 4. Pauson–Khand reaction of *t*-butoxycarbonyl-protected enynes **11** and **12**

General utility of this methodology will require mild and efficient cleavage of the N-O bond. Treatment of both **13** and **14** with activated Zn/ACOH , nickel boride (NiB₂), and hydrogenation with various catalysts afforded none of the desired products (**15** and **16**). However, treatment with SmI₂ in THF/EtOH facilitated smooth cleavage of the backbone to give differentially 3,4-substituted cyclopentenones **15** and **16** in 83% and 76% yields, respectively (Scheme 5). These and other cyclopentenones could prove to be valuable intermediates in the synthesis of complex natural products.

Scheme 5. Cleavage of N-O tether of cyclopentenones 13 and 14

In conclusion, we have designed a new $N-O$ tethered enyne approach, compatible with existing Pauson–Khand reaction conditions, to provide novel cyclopentenones. Selective cleavage of the $N-O$ backbone produces differentially 3,4-substituted cyclopentenones. Further work expanding the application and scope of this methodology is currently underway and will be reported shortly.

Acknowledgements

The authors gratefully acknowledge financial support from Yale Corporation and The Johnson & Johnson Focus Giving Program.

References

- 1. Brummond, K. M.; Kent, J. L. *Tetrahedron* **2000**, 56, 3263–3283.
- 2. Schore, N. E. *Org*. *React*. (*N*. *Y*.) **1991**, 40, 1–90.
- 3. Ingate, S. T.; Marco-Contelles, J. *Org*. *Prep*. *Proc*. *Int*. **1998**, 30, 121–143.
- 4. Stork, G.; Suh, H. S.; Kim, G. *J*. *Am*. *Chem*. *Soc*. **1991**, 113, 7054–7056.
- 5. Trost, B. M.; Grese, T. A. *J*. *Am*. *Chem*. *Soc*. **1991**, 113, 7363–7372.
- 6. Knapp, S. *Chem*. *Soc*. *Rev*. **1999**, 28, 61–72.
- 7. Kinnel, R. B.; Gehrken, H. P.; Scheuer, P. J. *J*. *Am*. *Chem*. *Soc*. **1993**, 115, 3376–3377.
- 8. Kinnel, R. B.; Gehrken, H.-P.; Swali, R.; Skoropowski, G.; Scheuer, P. J. *J*. *Org*. *Chem*. **1998**, 63, 3281–3286.
- 9. Kato, T.; Shizuri, Y.; Izumida, H.; Yokoyama, A.; Endo, M. *Tetrahedron Lett*. **1995**, 36, 2133–2136.
- 10. Urban, S.; Leone, P.d. A.; Carroll, A. R.; Fechner, G. A.; Smith, J.; Hooper, J. N. A.; Quinn, R. J. *J*. *Org*. *Chem*. **1999**, 64, 731–735.
- 11. D'Ambrosio, M.; Guerriero, A.; Chiasera, G.; Pietra, F. *Helv*. *Chim*. *Acta* **1994**, ⁷⁷, 1895–1902.
- 12. **General Procedure**: 1.2 equivalents of $Co_2(CO)_8$ are added to a stirred solution of 1.0 equivalent of enyne 3 in 30 mL of anhydrous dichloromethane. After stirring for 1 h at rt and verification of the reddish-brown cobalt– alkyne complex by TLC, 8.4 equivalents of anhydrous trimethylamine *N*-oxide are added in portions to the dark solution. We have found that cooling the solution below 0°C prior to addition of the *N*-oxide helps to control the exothermic character of the reaction and facilitates greater yields of product. Further stirring (2 h) followed by filtration of the crude mixture through a silica gel plug with ethyl acetate and column chromatography on SiO2 (Hex/EtOAc, 4:1 gradient to 1:1) furnishes UV active cyclopentenone **2**.
- 13. **Characterization of** *tert***-butyl 6-oxo-4,4a,5,6-tetrahydro-cyclopenta[***d***][1,2]-oxazine-3(1***H***)-carboxylate 14.** *R*^f 0.26 (1:1, Hex/EtOAc); IR (neat) 2978, 2932, 1715, 1634, 1443, 1393, 1368, 1320, 1245, 1159, 1089, 855 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.06 (s, 1H), 4.73 (d, 1H, *J*=13.3 Hz), 4.66 (d, 1H, *J*=13.3 Hz), 4.41 (m, 1H), 3.11 $(m, 1H)$, 3.07 (bs, 1H), 2.55 $(m, 1H)$, 2.06 $(m, 1H)$, 1.51 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 206.0, 171.9, 154.3, 128.8, 82.5, 70.1, 52.9, 38.2, 37.8, 28.2; HRMS (FAB) calcd for C₁₂H₁₇NO₄ 239.1158, found 239.1156.